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What is our System Model?

ool

1
1

Definition (Hidden Markov Model) .
« States: S 71 1
« Transition function: P : S — AS 2 ® e 1
» Observations: Z
« Observation function: obs: S — Z
S =1{90.9i,qc}

Z = {dry: O, icy: Q}
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Monitoring Observations

Having observed the observation sequence 7, what is
the probability of beingin g.?
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Monitoring Observations

Probability above A = 0.3 is unsafe.
Should the warning light go on?
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Monitoring Observations
Question

Probability below A\s = 0.1 is safe.
Probability above A, = 0.3 is unsafe.
Horizon of 3 observations.

Should the warning light go on?

Tl:Q ok
TQZOO ?
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S)S\SS ={r,..
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Verifying Monitors (this paper)

No Missed Alarms Problem

Given a HMM generating a set of traces Uih, and a monitor A, verify that

Vr e Uy 7 € L(A)
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Verifying Monitors (this paper)

No Missed Alarms Problem

Given a HMM generating a set of traces Uih, and a monitor A, verify that
Vr e Uy 7 € L(A)

|} Find a counter example

Find Missed Alarm Problem

Given a HMM generating a set of traces Uih, and a monitor A,
dr e [Uih. T ¢ L(A)

Complexity
Finding a missed alarm is NP-complete (proof in the paper).
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Searching for Missed Alarms

Set of traces ] )
Concise representation

of model for each trace

Monitor
transform solve USiﬁg
L [ Colored MDP PAYNT

HMM

- Writing conditional probability properties using reachability, by Baier et al.2.
- Equate traces in the HMM to policies in the colored MDP, by Badings et al. °.

TR. Andriushchenko et al., “PAYNT: A tool for inductive synthesis of probabilistic programs,”, 2021.
2C. Baier et al., “Computing conditional probabilities in markovian models efficiently,”, 2014
3T.S. Badings et al., “Ctmcs with imprecisely timed observations,”, 2024 L ko van der M
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Transformation 1/4 —— pathiqg = qi = Qe
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—— pathigy = qi = qc

— trace: OOO

Transformation 2/4
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Transformation 3/4
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Transformation 4 /4 —— pathigg = g = qc

_ trace:OOO
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—— pathiqg = qi = qe

— trace: QOO

* <<d31>>

Transformation 4 /4

Find a policy
o: NS 5 Zst.

« we reach an end <, 3>> Safe
state, ;
4
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prob. > Ay.

Solvable by PAYNT
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—— pathiqg — g = e

— trace: QOQ

Transformation 4/4

Find a policy
o: NSt 5 Zst.
- we reach an end —( (@) —
state,
» reach tgm With *
prob. > Ay.
Solvable by PAYNT

“The transformation is correct”
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Learning a monitor

 Active automata learning using L*.

« MQ: Forward Filtering implemented
by Premise® on the HMM with
threshold \,.

As S A < Ay

trace

learner

ok/ﬁ

Hypothesis
DFA

Membership?

invoke

accept/reject

4S.Junges et al., “Runtime monitors for markov decision processes,”, 2021
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Learning a monitor

, [ trace __|invoke | Forward
- Active automata learning using L*. Membership? Filtering
. L K/ -
- MQ: Forward Filtering implemented oo Uses
by Premise® on the HMM with 5 -
c
threshold \,. g HMM
- %
Hypothesis | uses
)\S = )\[ = )\u DFA invoke
. . . Equivalence? Verifier
« EQ:is acandidate monitor correct. || accept/reject

4S.Junges et al., “Runtime monitors for markov decision processes,”, 2021




Learning a monitor

. . . ] trace o invoke | Forward
« Active automata learning using L*. Membership? Filtering
. L K/ -
« MQ: Forward Filtering implemented oW e eos
. . Y
by Premise® on the HMM with 5
c
threshold ). 5 HMM
- x
As <N <A Hypothesis | uses
s==r DFA invoke
_ ] . Equivalence? Verifier
« EQ:is acandidate monitor correct. || accept/reject

“Monitors learned using our verification algorithm are correct.”

4S.Junges et al., “Runtime monitors for markov decision processes,”, 2021




Correctness Experiments

Benchmark A-63/64

290 states, 1258 transitions,
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Ads=XN=X, =03

Lukovander Maas 12/13



Correctness Experiments

Benchmark A-63/64

290 states, 1258 transitions,
50 observations, horizon of 10
Ads=XN=X, =03

ToVer

Lukovander Maas 12/13



Correctness Experiments

Benchmark A-63/64

290 states, 1258 transitions,
50 observations, horizon of 10
Ads=XN=X, =03

ToVer Sampling-based
NN 1 NN

Luko van der

Maas

12/13



Correctness Experiments
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Correctness Experiments
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(c) Learning with verification, As < Aj < Ay
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Conclusion

Summary
- We present a verification algorithm for HMM monitors.
« We prove the verification problem is coNP-complete.
- We integrate it with active automata learning to learn correct monitors.

« We learn monitors with up to 1500 states in 11 hours on models with
100s of states.

Future interests
 |deas to adapt AAL more to our specific problem.

« Adapt colored MDP model checking more to our specific problem of
conditional probabilities.

» Learn models from data such that they are useful for monitoring.

Email: luko.vandermaas@ru.nl
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Results: Monitor Size
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